Neuronen des Gehirns - Struktur, Klassifikation und Pfade

Das zentrale Nervensystem (ZNS) besteht aus Gehirn und Rückenmark. Ist es durch periphere Nerven mit verschiedenen Körperteilen verbunden? Motor und empfindlich. Siehe auch NERVOUS SYSTEM.

Gehirn ?? symmetrische Struktur, wie die meisten anderen Körperteile. Bei der Geburt beträgt sein Gewicht etwa 0,3 kg, während es bei einem Erwachsenen? ok 1,5 kg. Bei der Untersuchung des Gehirns von außen ziehen zwei große Halbkugeln, die die tieferen Formationen verdecken, die Aufmerksamkeit auf sich. Die Oberfläche der Hemisphären ist mit Rillen und Windungen bedeckt, die die Oberfläche der Kortikalis (äußere Schicht des Gehirns) vergrößern. Hinter dem Kleinhirn liegt die Oberfläche, deren Oberfläche dünner geschnitten ist. Unter den großen Hemisphären befindet sich der Hirnstamm, der in das Rückenmark übergeht. Nerven verlassen den Rumpf und das Rückenmark, entlang dem Informationen von den internen und externen Rezeptoren zum Gehirn fließen, und Signale zu den Muskeln und Drüsen fließen in die entgegengesetzte Richtung. 12 Paare von Hirnnerven bewegen sich vom Gehirn weg.

Innerhalb des Gehirns unterscheidet sich die graue Substanz, die hauptsächlich aus den Körpern der Nervenzellen besteht und den Cortex und die weiße Substanz bildet. Nervenfasern, die die Bahnen (Bahnen) bilden, die verschiedene Teile des Gehirns verbinden, und Nerven bilden, die über die Grenzen des zentralen Nervensystems hinausragen und zu verschiedenen Organen führen.

Sind das Gehirn und das Rückenmark durch Knochenschalen geschützt? Schädel und Wirbelsäule. Zwischen der Substanz des Gehirns und den Knochenwänden befinden sich drei Schalen: die äußere ?? Dura Mater, intern ?? weich und zwischen ihnen? dünne Arachnoidalschale. Der Raum zwischen den Membranen ist mit zerebrospinaler (zerebrospinaler) Flüssigkeit gefüllt, die in ihrer Zusammensetzung dem Blutplasma ähnelt und in den intracerebralen Hohlräumen (Ventrikeln des Gehirns) produziert wird. Sie zirkuliert im Gehirn und im Rückenmark und versorgt sie mit Nährstoffen und anderen für die Vitalaktivität erforderlichen Faktoren.

Die Versorgung des Gehirns mit Blut erfolgt hauptsächlich durch die Halsschlagader. An der Basis des Gehirns sind sie in große Äste unterteilt, die zu den verschiedenen Abschnitten führen. Obwohl das Gehirngewicht nur 2,5% des Körpergewichts beträgt, erhält es ständig Tag und Nacht 20% des im Körper zirkulierenden Blutes und dementsprechend Sauerstoff. Die Energiereserven des Gehirns selbst sind extrem klein und daher stark von der Sauerstoffversorgung abhängig. Es gibt Schutzmechanismen, die den zerebralen Blutfluss bei Blutungen oder Verletzungen unterstützen können. Ein Merkmal des zerebralen Kreislaufs ist auch das Vorhandensein von sogenannten. Blut-Hirn-Schranke. Es besteht aus mehreren Membranen, die die Durchlässigkeit der Gefäßwände und den Fluss vieler Verbindungen aus dem Blut in die Substanz des Gehirns begrenzen; somit erfüllt diese Barriere Schutzfunktionen. Beispielsweise dringen viele Arzneistoffe nicht durch.

ZNS-Zellen werden Neuronen genannt. ihre Funktion? Informationsverarbeitung. Im menschlichen Gehirn 5 bis 20 Milliarden Neuronen. Die Struktur des Gehirns umfasst auch Gliazellen, es gibt etwa zehnmal mehr als Neuronen. Glia füllt den Raum zwischen den Neuronen und bildet das tragende Gerüst des Nervengewebes und erfüllt auch metabolische und andere Funktionen.

Das Neuron ist wie alle anderen Zellen von einer semipermeablen (Plasma-) Membran umgeben. Zwei Arten von Prozessen weichen von einem Zellkörper ab. Dendriten und Axonen. Die meisten Neuronen haben viele verzweigte Dendriten, aber nur ein Axon. Dendriten sind normalerweise sehr kurz, während die Länge des Axons von wenigen Zentimetern bis zu einigen Metern variiert. Der Körper des Neurons enthält den Kern und andere Organellen, genauso wie in anderen Körperzellen (siehe auch CELL).

Nervenimpulse. Die Informationsübertragung im Gehirn sowie im gesamten Nervensystem erfolgt mittels Nervenimpulsen. Sie breiten sich in der Richtung vom Zellkörper bis zum terminalen Teil des Axons aus, der verzweigen kann und eine Reihe von Enden bildet, die durch einen schmalen Spalt mit anderen Neuronen in Kontakt treten. Synapse; Die Übertragung von Impulsen durch die Synapse wird durch Chemikalien vermittelt. Neurotransmitter.

Nervenimpulse entstehen in der Regel in Dendriten? dünne Verzweigungsprozesse des Neurons, die darauf spezialisiert sind, Informationen von anderen Neuronen zu erhalten und an den Körper des Neurons zu übertragen. Auf Dendriten und in einer geringeren Anzahl gibt es Tausende von Synapsen auf dem Zellkörper; Es ist durch die Axon-Synapsen, die Informationen aus dem Körper des Neurons transportieren und an die Dendriten anderer Neuronen weiterleiten.

Das Ende des Axons, das den präsynaptischen Teil der Synapse bildet, enthält kleine Vesikel mit einem Neurotransmitter. Wenn der Impuls die präsynaptische Membran erreicht, wird der Neurotransmitter aus dem Vesikel in den synaptischen Spalt abgegeben. Das Ende eines Axons enthält nur einen Typ von Neurotransmittern, oft in Kombination mit einem oder mehreren Typen von Neuromodulatoren (siehe unten Neurochemie des Gehirns).

Der aus der präsynaptischen Axonmembran freigesetzte Neurotransmitter bindet an Rezeptoren an den Dendriten des postsynaptischen Neurons. Das Gehirn verwendet eine Vielzahl von Neurotransmittern, von denen jeder mit seinem speziellen Rezeptor verbunden ist.

Die Rezeptoren an den Dendriten sind mit Kanälen in einer semipermeablen postsynaptischen Membran verbunden, die die Bewegung von Ionen durch die Membran steuert. Im Ruhezustand hat das Neuron ein elektrisches Potential von 70 Millivolt (Ruhepotential), während die Innenseite der Membran gegenüber der Außenseite negativ geladen ist. Obwohl es verschiedene Mediatoren gibt, wirken sie alle stimulierend oder hemmend auf das postsynaptische Neuron. Der stimulierende Effekt wird durch die Verbesserung des Flusses bestimmter Ionen, hauptsächlich Natrium und Kalium, durch die Membran erreicht. Als Ergebnis nimmt die negative Ladung der inneren Oberfläche ab. Depolarisation tritt auf. Die Bremswirkung tritt hauptsächlich durch Änderungen im Fluss von Kalium und Chloriden auf, wodurch die negative Ladung der inneren Oberfläche größer wird als im Ruhezustand und eine Hyperpolarisierung auftritt.

Die Funktion des Neurons besteht darin, alle durch die Synapsen wahrgenommenen Einflüsse auf seinen Körper und seine Dendriten zu integrieren. Da diese Einflüsse erregend oder hemmend sein können und nicht zeitlich zusammenfallen, muss das Neuron die Gesamtwirkung der synaptischen Aktivität als Funktion der Zeit berechnen. Wenn die exzitatorische Wirkung der Hemmwirkung überwiegt und die Membrandepolarisation den Schwellenwert überschreitet, aktiviert ein bestimmter Teil der Membran des Neurons? im Bereich der Basis seines Axons (Axon tubercle). Hier entsteht durch die Öffnung von Kanälen für Natrium- und Kaliumionen ein Aktionspotential (Nervenimpuls).

Dieses Potential erstreckt sich weiter entlang des Axons bis zu seinem Ende mit einer Geschwindigkeit von 0,1 m / s bis 100 m / s (je dicker das Axon ist, desto höher ist die Leitungsgeschwindigkeit). Wenn das Aktionspotential das Ende des Axons erreicht, wird abhängig von der Potentialdifferenz ein anderer Ionenkanal aktiviert. Kalziumkanäle. Demnach gelangt Kalzium in das Axon, was zur Mobilisierung von Vesikeln mit dem Neurotransmitter führt, die sich der präsynaptischen Membran nähern, sich mit ihr verbinden und den Neurotransmitter in die Synapse freigeben.

Myelin- und Gliazellen. Viele Axone sind mit einer Myelinhülle bedeckt, die durch wiederholt verdrillte Membranen von Gliazellen gebildet wird. Myelin besteht hauptsächlich aus Lipiden, die der weißen Substanz des Gehirns und des Rückenmarks ein charakteristisches Aussehen verleihen. Dank der Myelinscheide nimmt die Geschwindigkeit des Aktionspotentials entlang des Axons zu, da sich die Ionen nur an Stellen bewegen können, die nicht von Myelin bedeckt sind. so genannte Interceptions Ranvier. Zwischen den Interceptions werden Impulse entlang der Myelinhülle wie durch ein elektrisches Kabel geleitet. Da das Öffnen des Kanals und der Durchgang von Ionen einige Zeit in Anspruch nehmen, beschleunigt die Beseitigung der konstanten Öffnung der Kanäle und die Beschränkung ihres Umfangs auf kleine Membranbereiche, die nicht von Myelin bedeckt sind, die Impulsleitung entlang des Axons um das Zehnfache.

Nur ein Teil der Gliazellen ist an der Bildung der Myelinscheide von Nerven (Schwann-Zellen) oder Nervenbahnen (Oligodendrozyten) beteiligt. Viel mehr Gliazellen (Astrozyten, Mikrogliozyten) erfüllen andere Funktionen: Sie bilden das tragende Skelett des Nervengewebes, sorgen für den Stoffwechsel und erholen sich von Verletzungen und Infektionen.

Betrachten Sie ein einfaches Beispiel. Was passiert, wenn wir einen Stift auf den Tisch nehmen? Das vom Stift reflektierte Licht fokussiert mit der Linse im Auge und wird auf die Netzhaut gerichtet, wo das Bild des Stiftes erscheint. es wird von den entsprechenden Zellen wahrgenommen, von denen das Signal zu den wichtigsten sensorisch übertragenden Kernen des Gehirns gelangt, die sich im Thalamus (visueller Tuberkel) befinden, hauptsächlich in dem Teil, der als lateral geniculate body bezeichnet wird. Es werden zahlreiche Neuronen aktiviert, die auf die Verteilung von Licht und Dunkelheit reagieren. Axone von Neuronen des seitlich gekröpften Körpers gehen zur primären visuellen Kortikalis, die sich im Hinterkopflappen der großen Hemisphären befindet. Impulse, die vom Thalamus zu diesem Teil des Kortex kommen, werden in eine komplexe Abfolge kortikaler Entladungen umgewandelt, von denen einige auf die Grenze zwischen Stift und Tisch reagieren, andere ?? an den Ecken des Bleistiftbildes usw. Vom primären visuellen Kortex gelangen Informationen über die Axone in den assoziativen visuellen Kortex, wo die Mustererkennung stattfindet, in diesem Fall ein Bleistift. Die Erkennung in diesem Teil des Kortex basiert auf zuvor gesammelten Kenntnissen der äußeren Umrisse von Objekten.

Die Bewegungsplanung (d. H. Mit einem Bleistift) erfolgt wahrscheinlich in der Kortikalis der Stirnlappen der Gehirnhälften. Im selben Bereich der Kortikalis befinden sich Motoneuronen, die den Hand- und Fingermuskeln Befehle geben. Die Annäherung der Hand an den Stift wird durch das visuelle System und die Interorezeptoren gesteuert, die die Position der Muskeln und Gelenke wahrnehmen, deren Informationen in das zentrale Nervensystem gelangen. Wenn wir einen Stift in die Hand nehmen, sagen uns die Rezeptoren an den Fingerspitzen, die Druck wahrnehmen, ob die Finger den Stift gut halten und welche Anstrengungen unternommen werden müssen, um ihn zu halten. Wenn wir unseren Namen in Bleistift schreiben möchten, müssen wir andere im Gehirn gespeicherte Informationen aktivieren, die diese komplexere Bewegung ermöglichen, und die visuelle Kontrolle hilft, die Genauigkeit zu erhöhen.

Im obigen Beispiel ist zu sehen, dass das Ausführen einer relativ einfachen Aktion ausgedehnte Bereiche des Gehirns umfasst, die sich vom Cortex bis zu den subkortikalen Regionen erstrecken. Mit komplexeren Verhaltensweisen in Verbindung mit Sprache oder Denken werden andere neuronale Schaltkreise aktiviert, die noch größere Bereiche des Gehirns abdecken.

Das Gehirn kann in drei Hauptteile unterteilt werden: das Vorderhirn, der Hirnstamm und das Kleinhirn. Im Vorderhirn werden die Gehirnhälften, Thalamus, Hypothalamus und Hypophyse (eine der wichtigsten neuroendokrinen Drüsen) ausgeschieden. Der Hirnstamm besteht aus der Medulla oblongata, den Pons (Pons) und dem Mittelhirn.

Große Hemisphäre? Der größte Teil des Gehirns bei Erwachsenen macht etwa 70% seines Gewichts aus. Normalerweise sind die Halbkugeln symmetrisch. Sie sind durch ein massives Axon-Bündel (Corpus Callosum) miteinander verbunden, das den Informationsaustausch ermöglicht.

Jede Hemisphäre besteht aus vier Lappen: frontal, parietal, temporal und occipital. Der Kortex der Frontallappen enthält Zentren, die die Bewegungsaktivität sowie wahrscheinlich Planungs- und Vorausschauzentren regulieren. In der Kortikalis der Parietallappen, die sich hinter der Stirnseite befinden, gibt es Zonen körperlicher Empfindungen, einschließlich des Tastsinns sowie des Gelenk- und Muskelgefühls. Seitlich zum Parietallappen schließt sich das Temporal an, in dem sich der primäre auditorische Kortex befindet, sowie die Sprachzentren und andere höhere Funktionen. Die Rückseite des Gehirns besetzt den Hinterkopflappen, der sich oberhalb des Kleinhirns befindet; Seine Rinde enthält Zonen visueller Empfindungen.

Bereiche des Cortex, die nicht in direktem Zusammenhang mit der Regulierung von Bewegungen oder der Analyse sensorischer Informationen stehen, werden als assoziativer Cortex bezeichnet. In diesen spezialisierten Zonen werden assoziative Verbindungen zwischen verschiedenen Bereichen und Teilen des Gehirns hergestellt und die Informationen, die von ihnen stammen, werden integriert. Der assoziative Kortex bietet komplexe Funktionen wie Lernen, Gedächtnis, Sprache und Denken.

Subkortikale Strukturen. Unter dem Kortex befinden sich eine Reihe wichtiger Hirnstrukturen oder Kerne, die Cluster von Neuronen sind. Dazu gehören der Thalamus, Basalganglien und Hypothalamus. Thalamus ?? Dies ist der wichtigste Kern der Sinnesübertragung. er erhält Informationen von den Sinnen und leitet sie an die entsprechenden Teile des sensorischen Kortex weiter. Es gibt auch unspezifische Zonen, die fast dem gesamten Cortex zugeordnet sind und wahrscheinlich die Prozesse ihrer Aktivierung und der Aufrechterhaltung von Wachheit und Aufmerksamkeit vorsehen. Die Basalganglien? Dies ist eine Gruppe von Kernen (der sogenannte Schalen-, Pale-Ball- und Caudat-Kern), die an der Regulierung koordinierter Bewegungen beteiligt sind (starten und stoppen).

Hypothalamus ?? ein kleiner Bereich an der Basis des Gehirns unter dem Thalamus. Reich an Blut, Hypothalamus? ein wichtiges Zentrum, das die homöostatischen Funktionen des Körpers steuert. Es produziert Substanzen, die die Synthese und Freisetzung von Hypophysenhormonen regulieren (siehe auch HYPOPHYSE). Im Hypothalamus befinden sich viele Kerne, die bestimmte Funktionen ausüben, wie die Regulation des Wassermetabolismus, die Verteilung von gespeichertem Fett, Körpertemperatur, Sexualverhalten, Schlaf und Wachheit.

Der Hirnstamm befindet sich an der Schädelbasis. Es verbindet das Rückenmark mit dem Vorderhirn und besteht aus der Medulla oblongata, den Pons, der Mitte und dem Diencephalon.

Durch das mittlere und mittlere Gehirn sowie durch den gesamten Rumpf führen Sie die zum Rückenmark führenden Bewegungspfade sowie einige empfindliche Pfade vom Rückenmark zu den darüber liegenden Teilen des Gehirns. Unterhalb des Mittelhirns befindet sich eine Brücke, die durch Nervenfasern mit dem Kleinhirn verbunden ist. Der unterste Teil des Kofferraums? Medulla? geht direkt in die Wirbelsäule. In der Medulla oblongata befinden sich Zentren, die die Aktivität des Herzens und der Atmung in Abhängigkeit von den äußeren Umständen regulieren und auch den Blutdruck, die Magen- und Darmbeweglichkeit steuern.

Auf der Höhe des Rumpfes kreuzen sich die Wege, die jede Gehirnhälfte mit dem Kleinhirn verbinden. Daher kontrolliert jede der Hemisphären die Gegenseite des Körpers und ist mit der gegenüberliegenden Halbkugel des Kleinhirns verbunden.

Das Kleinhirn befindet sich unter den Hinterkopflappen der großen Hemisphären. Über die Pfade der Brücke ist sie mit den darüber liegenden Teilen des Gehirns verbunden. Das Kleinhirn reguliert die subtilen automatischen Bewegungen und koordiniert die Aktivität verschiedener Muskelgruppen bei stereotypen Verhaltenshandlungen. er kontrolliert auch ständig die Position von Kopf, Rumpf und Gliedmaßen, d.h. an der Aufrechterhaltung des Gleichgewichts beteiligt. Nach den neuesten Daten spielt das Kleinhirn eine wichtige Rolle bei der Ausbildung der motorischen Fähigkeiten und hilft dabei, den Bewegungsablauf zu merken.

Andere Systeme. Limbisches System? ein breites Netzwerk von miteinander verbundenen Gehirnbereichen, die die emotionalen Zustände regulieren sowie für Lernen und Gedächtnis sorgen. Zu den Kernen, die das limbische System bilden, gehören die Amygdala und der Hippocampus (eingeschlossen im Schläfenlappen) sowie der Hypothalamus und der sogenannte Nucleus. transparentes Septum (in den subkortikalen Regionen des Gehirns).

Retikuläre Formation ?? ein Netzwerk von Neuronen, die sich über den gesamten Rumpf bis zum Thalamus erstrecken und mit ausgedehnten Bereichen des Cortex verbunden sind. Es ist an der Regulierung von Schlaf und Wachsein beteiligt, erhält den aktiven Zustand des Kortex aufrecht und trägt zum Fokus der Aufmerksamkeit auf bestimmte Objekte bei.

Mit Hilfe von Elektroden, die auf der Oberfläche des Kopfes platziert oder in die Substanz des Gehirns eingeführt werden, ist es möglich, die elektrische Aktivität des Gehirns aufgrund der Entladungen seiner Zellen zu bestimmen. Die Aufzeichnung der elektrischen Aktivität des Gehirns mit Elektroden an der Oberfläche des Kopfes wird als Elektroenzephalogramm (EEG) bezeichnet. Es kann nicht die Entladung eines einzelnen Neurons aufgezeichnet werden. Nur aufgrund der synchronisierten Aktivität von Tausenden oder Millionen von Neuronen treten auf der aufgezeichneten Kurve wahrnehmbare Schwingungen (Wellen) auf.

Bei ständiger Registrierung im EEG werden zyklische Veränderungen sichtbar, die das Gesamtaktivitätsniveau des Individuums widerspiegeln. Im aktiven Wachzustand erfasst das EEG nicht-rhythmische Beta-Wellen mit niedriger Amplitude. Bei entspanntem Wachzustand mit geschlossenen Augen überwiegen Alphawellen mit einer Frequenz von 7–12 Zyklen pro Sekunde. Das Auftreten von Schlaf wird durch das Auftreten von langsamen Wellen mit hoher Amplitude (Delta-Wellen) angezeigt. Während des Träumens treten Beta-Wellen im EEG wieder auf, und auf der Grundlage des EEGs kann der Eindruck erweckt werden, dass die Person wach ist (daher der Begriff „paradoxer Schlaf“). Träume werden oft von schnellen Augenbewegungen begleitet (bei geschlossenen Augenlidern). Daher wird Träumen auch als Schlaf mit schnellen Augenbewegungen bezeichnet (siehe auch SLEEP). Mit dem EEG können bestimmte Erkrankungen des Gehirns, insbesondere Epilepsie, diagnostiziert werden (siehe EPILEPSIE).

Wenn Sie die elektrische Aktivität des Gehirns während der Wirkung eines bestimmten Stimulus (visuell, auditiv oder taktil) registrieren, können Sie den sogenannten identifizieren. evozierte Potentiale? synchrone Entladungen einer bestimmten Gruppe von Neuronen, die als Reaktion auf einen bestimmten äußeren Reiz entstehen. Die Untersuchung evozierter Potentiale ermöglichte es, die Lokalisierung von Gehirnfunktionen zu klären, insbesondere die Funktion der Sprache mit bestimmten Bereichen der Temporal- und Frontallappen zu verknüpfen. Diese Studie hilft auch, den Zustand der sensorischen Systeme bei Patienten mit eingeschränkter Empfindlichkeit zu beurteilen.

Die wichtigsten Neurotransmitter des Gehirns sind Acetylcholin, Noradrenalin, Serotonin, Dopamin, Glutamat, Gamma-Aminobuttersäure (GABA), Endorphine und Enkephaline. Neben diesen bekannten Substanzen funktionieren wahrscheinlich noch viele andere, die noch nicht untersucht wurden, im Gehirn. Einige Neurotransmitter wirken nur in bestimmten Bereichen des Gehirns. Endorphine und Enkephaline finden sich daher nur in den Wegen, die Schmerzimpulse führen. Andere Mediatoren wie Glutamat oder GABA sind weiter verbreitet.

Die Wirkung von Neurotransmittern. Wie bereits erwähnt, ändern Neurotransmitter, die auf die postsynaptische Membran einwirken, ihre Leitfähigkeit für Ionen. Dies geschieht häufig durch die Aktivierung in dem postsynaptischen Neuron des zweiten "Mediators" -Systems, z. B. des cyclischen Adenosinmonophosphats (cAMP). Die Wirkung von Neurotransmittern kann unter dem Einfluss einer anderen Klasse neurochemischer Substanzen verändert werden. Peptid-Neuromodulatoren. Sie werden gleichzeitig mit dem Mediator von der präsynaptischen Membran freigesetzt und können die Wirkung der Mediatoren auf die postsynaptische Membran verstärken oder auf andere Weise verändern.

Das kürzlich entdeckte Endorphin-Enkephalin-System ist wichtig. Enkephaline und Endorphine? kleine Peptide, die die Weiterleitung von Schmerzimpulsen hemmen, indem sie an Rezeptoren im zentralen Nervensystem binden, einschließlich in den höheren Zonen des Kortex. Diese Familie von Neurotransmittern unterdrückt die subjektive Schmerzempfindung.

Psychoaktive Drogen? Substanzen, die spezifisch an bestimmte Rezeptoren im Gehirn binden können und Verhaltensänderungen verursachen können. Identifiziert mehrere Mechanismen ihrer Aktion. Einige beeinflussen die Synthese von Neurotransmittern, andere? über ihre Akkumulation und Freisetzung aus synaptischen Vesikeln (beispielsweise verursacht Amphetamin eine schnelle Freisetzung von Noradrenalin). Der dritte Mechanismus besteht darin, an Rezeptoren zu binden und die Wirkung eines natürlichen Neurotransmitters nachzuahmen. Beispielsweise wird die Wirkung von LSD (Lysergsäurediethylamid) durch seine Fähigkeit erklärt, an Serotoninrezeptoren zu binden. Die vierte Art von Aktionsdrogen? Rezeptorblockade, d.h. Antagonismus mit Neurotransmittern. Solche weit verbreiteten Antipsychotika wie Phenothiazine (zum Beispiel Chlorpromazin oder Amininazin) blockieren Dopaminrezeptoren und verringern dadurch die Wirkung von Dopamin auf postsynaptische Neuronen. Schließlich der letzte der gemeinsamen Wirkmechanismen? Hemmung der Neurotransmitter-Inaktivierung (viele Pestizide verhindern die Acetylcholin-Inaktivierung).

Es ist seit langem bekannt, dass Morphin (ein gereinigtes Schlafmohnprodukt) nicht nur eine ausgeprägte analgetische (analgetische) Wirkung hat, sondern auch die Fähigkeit, Euphorie zu verursachen. Deshalb wird es als Medikament verwendet. Die Wirkung von Morphin hängt mit seiner Fähigkeit zusammen, an Rezeptoren des humanen Endorphin-Enkephalin-Systems zu binden (siehe auch DRUG). Dies ist nur eines von vielen Beispielen dafür, dass eine chemische Substanz eines anderen biologischen Ursprungs (in diesem Fall pflanzlichen Ursprungs) die Funktion des Gehirns von Tieren und Menschen beeinflussen kann, indem sie mit spezifischen Neurotransmittersystemen interagiert. Ein anderes bekanntes Beispiel? Curare, abgeleitet von einer tropischen Pflanze und in der Lage, Acetylcholinrezeptoren zu blockieren. Die Indianer Südamerikas fetten Curare-Pfeilspitzen ein und nutzten ihren lähmenden Effekt, der mit der Blockade der neuromuskulären Übertragung zusammenhängt.

Hirnforschung ist aus zwei Hauptgründen schwierig. Erstens ist das durch den Schädel sicher geschützte Gehirn nicht direkt zugänglich. Zweitens regenerieren sich die Neuronen des Gehirns nicht, so dass jeder Eingriff zu irreversiblen Schäden führen kann.

Trotz dieser Schwierigkeiten sind Hirnforschung und einige Formen der Behandlung (vor allem neurochirurgische Eingriffe) seit der Antike bekannt. Archäologische Funde zeigen, dass der Mensch bereits im Altertum die Schädeldecke gebrochen hat, um Zugang zum Gehirn zu erhalten. Besonders intensive Hirnforschung fand in Kriegszeiten statt, als verschiedene Kopfverletzungen beobachtet werden konnten.

Schädigung des Gehirns durch Verletzungen an der Front oder Verletzungen in Friedenszeiten? eine Art Experiment, bei dem bestimmte Teile des Gehirns zerstört werden. Da dies die einzig mögliche Form eines "Experiments" am menschlichen Gehirn ist, waren Experimente an Labortieren eine weitere wichtige Forschungsmethode. Betrachtet man die Verhaltens- oder physiologischen Folgen einer Schädigung einer bestimmten Gehirnstruktur, kann man deren Funktion beurteilen.

Die elektrische Aktivität des Gehirns bei Versuchstieren wird mit Elektroden erfasst, die an der Oberfläche des Kopfes oder des Gehirns angeordnet oder in die Substanz des Gehirns eingebracht werden. So ist es möglich, die Aktivität kleiner Neuronengruppen oder einzelner Neuronen zu bestimmen sowie Änderungen der Ionenflüsse über die Membran hinweg zu identifizieren. Mit Hilfe eines stereotaktischen Geräts, mit dem Sie die Elektrode an einem bestimmten Punkt im Gehirn einführen können, werden die unzugänglichen Tiefenabschnitte untersucht.

Ein weiterer Ansatz besteht darin, kleine Bereiche des lebenden Hirngewebes zu entfernen, wonach seine Existenz als in ein Nährmedium eingelegtes Stück erhalten bleibt oder die Zellen getrennt und in Zellkulturen untersucht werden. Im ersten Fall können Sie die Interaktion von Neuronen erforschen, im zweiten? Vitalaktivität einzelner Zellen.

Bei der Untersuchung der elektrischen Aktivität einzelner Neuronen oder ihrer Gruppen in verschiedenen Bereichen des Gehirns wird in der Regel zunächst die Anfangsaktivität aufgezeichnet, und dann wird der Einfluss einer bestimmten Wirkung auf die Funktion der Zellen bestimmt. Gemäß einem anderen Verfahren wird durch die implantierte Elektrode ein elektrischer Impuls angelegt, um die nächsten Neuronen künstlich zu aktivieren. So können Sie die Auswirkungen bestimmter Bereiche des Gehirns auf andere Bereiche untersuchen. Diese Methode der elektrischen Stimulation war nützlich bei der Untersuchung von Stielaktivierungssystemen, die durch das Mittelhirn strömen; Sie wird auch verwendet, wenn Sie versuchen zu verstehen, wie Lernprozesse und Gedächtnisprozesse auf synaptischer Ebene ablaufen.

Vor hundert Jahren wurde klar, dass die Funktionen der linken und der rechten Hemisphäre unterschiedlich sind. Ein französischer Chirurg P. Brock, der Patienten mit zerebrovaskulärem Unfall (Schlaganfall) beobachtete, fand heraus, dass nur Patienten mit einer Schädigung der linken Hemisphäre an einer Sprachstörung litten. Weitere Untersuchungen zur Spezialisierung der Hemisphären wurden mit anderen Methoden fortgesetzt, z. B. EEG-Aufzeichnung und evozierte Potentiale.

In den letzten Jahren wurden komplexe Technologien verwendet, um Bilder (Visualisierungen) des Gehirns zu erhalten. Somit hat die Computertomographie (CT) die klinische Neurologie revolutioniert, wodurch ein detailliertes (Schicht-) Bild der Gehirnstrukturen in vivo erhalten werden kann. Eine andere Visualisierungsmethode? Positronen-Emissions-Tomographie (PET) ?? gibt ein Bild von der metabolischen Aktivität des Gehirns. In diesem Fall wird ein kurzlebiges Radioisotop in eine Person eingeführt, die sich in verschiedenen Teilen des Gehirns ansammelt, und je mehr sie ihre Stoffwechselaktivität erhöht. Mit Hilfe von PET wurde auch gezeigt, dass die Sprachfunktionen der Mehrheit der untersuchten Personen mit der linken Hemisphäre zusammenhängen. Da das Gehirn mit einer großen Anzahl paralleler Strukturen arbeitet, liefert PET solche Informationen über Gehirnfunktionen, die mit Einzelelektroden nicht erreichbar sind.

In der Regel wird die Hirnforschung mit einer Kombination von Methoden durchgeführt. Zum Beispiel verwendete der amerikanische Neurobiologe R. Sperri mit seinen Mitarbeitern bei einigen Patienten mit Epilepsie ein Behandlungsverfahren, um das Corpus callosum (Axonbündel, das beide Hemisphären verbindet) zu schneiden. Anschließend wurde bei diesen Patienten mit "Split" -Hirn die hemisphärische Spezialisierung untersucht. Es wurde festgestellt, dass für Sprache und andere logische und analytische Funktionen die dominante dominante (normalerweise linke) Hemisphäre verantwortlich ist, während die nicht dominante Hemisphäre die räumlich-zeitlichen Parameter der äußeren Umgebung analysiert. Es wird also aktiviert, wenn wir Musik hören. Ein Mosaikbild der Gehirnaktivität legt nahe, dass es zahlreiche spezialisierte Bereiche innerhalb der Kortex- und subkortikalen Strukturen gibt. Die gleichzeitige Aktivität dieser Bereiche bestätigt das Konzept des Gehirns als Computergerät mit paralleler Datenverarbeitung.

Mit dem Aufkommen neuer Forschungsmethoden werden sich die Vorstellungen von Gehirnfunktionen wahrscheinlich ändern. Die Verwendung von Geräten, mit denen wir eine "Karte" der Stoffwechselaktivität verschiedener Teile des Gehirns erhalten, sowie die Verwendung molekulargenetischer Ansätze sollten unser Wissen über die im Gehirn ablaufenden Prozesse vertiefen. Siehe auch Neuropsychologie.

Bei verschiedenen Arten von Wirbeltieren ist das Gehirn bemerkenswert ähnlich. Wenn wir Vergleiche auf der Ebene von Neuronen anstellen, finden wir eine eindeutige Ähnlichkeit dieser Eigenschaften wie die verwendeten Neurotransmitter, Schwankungen der Ionenkonzentration, Zelltypen und physiologischen Funktionen. Grundlegende Unterschiede zeigen sich nur im Vergleich zu Wirbellosen. Wirbellose Neuronen sind viel größer; Oft sind sie nicht durch chemische, sondern durch elektrische Synapsen miteinander verbunden, die im menschlichen Gehirn selten vorkommen. Im Nervensystem von Wirbellosen werden einige Neurotransmitter nachgewiesen, die für Wirbeltiere nicht charakteristisch sind.

Bei den Wirbeltieren beziehen sich Unterschiede in der Struktur des Gehirns hauptsächlich auf das Verhältnis seiner individuellen Strukturen. Bei der Beurteilung der Ähnlichkeiten und Unterschiede im Gehirn von Fischen, Amphibien, Reptilien, Vögeln, Säugetieren (einschließlich Menschen) können verschiedene allgemeine Muster abgeleitet werden. Erstens haben alle diese Tiere die gleiche Struktur und Funktion von Neuronen. Zweitens sind Struktur und Funktionen von Rückenmark und Hirnstamm sehr ähnlich. Drittens geht die Entwicklung der Säugetiere mit einer starken Zunahme der kortikalen Strukturen einher, die bei Primaten eine maximale Entwicklung erreichen. Bei Amphibien macht der Kortex nur einen kleinen Teil des Gehirns aus, wohingegen beim Menschen? Dies ist die dominante Struktur. Es wird jedoch angenommen, dass die Prinzipien der Funktionsweise des Gehirns aller Wirbeltiere nahezu gleich sind. Die Unterschiede werden durch die Anzahl der Interneuron-Verbindungen und -Interaktionen bestimmt, die umso höher ist, je komplexer das Gehirn ist. Siehe auch ANATOMY COMPARATIVE.

Gehirn: Funktionen, Struktur

Das Gehirn ist natürlich der Hauptbestandteil des menschlichen Zentralnervensystems.

Wissenschaftler glauben, dass es nur von 8% genutzt wird.

Daher sind seine verborgenen Möglichkeiten endlos und werden nicht untersucht. Es gibt auch keinen Zusammenhang zwischen Talenten und menschlichen Fähigkeiten. Die Struktur und Funktion des Gehirns impliziert die Kontrolle über die gesamte Vitalaktivität des Organismus.

Die Lage des Gehirns unter dem Schutz der starken Schädelknochen gewährleistet die normale Funktion des Körpers.

Struktur

Das menschliche Gehirn wird zuverlässig durch starke Schädelknochen geschützt und nimmt fast den gesamten Schädelraum ein. Anatomisten unterscheiden die folgenden Gehirnregionen bedingt: die beiden Hemisphären, den Rumpf und das Kleinhirn.

Eine andere Abteilung wird auch genommen. Teile des Gehirns sind der Schläfenlappen und die Krone und der Hinterkopf.

Seine Struktur besteht aus mehr als einhundert Milliarden Neuronen. Seine Masse ist normalerweise sehr unterschiedlich, aber sie erreicht 1800 Gramm, für Frauen liegt der Durchschnitt etwas niedriger.

Das Gehirn besteht aus grauer Substanz. Der Cortex besteht aus der gleichen grauen Substanz, die aus fast der gesamten Masse der Nervenzellen besteht, die zu diesem Organ gehören.

Darunter befindet sich verborgene weiße Substanz, bestehend aus Prozessen von Neuronen, die Leitern sind, Nervenimpulse werden vom Körper zur Analyse an den Subkortex weitergeleitet, sowie Befehle vom Kortex an Körperteile.

Die Verantwortungsbereiche des Gehirns für das Laufen liegen im Cortex, aber auch in der weißen Substanz. Tiefe Zentren werden als Kern bezeichnet.

Repräsentiert die Gehirnstruktur in den Tiefen ihres hohlen Bereichs, der aus 4 Ventrikeln besteht, die durch Kanäle getrennt sind, in denen das die Schutzfunktion ausübende Fluid zirkuliert. Draußen hat es Schutz vor drei Schalen.

Funktionen

Das menschliche Gehirn beherrscht das gesamte Leben des Körpers von den kleinsten Bewegungen bis zu einer hohen Denkfunktion.

Gehirnteilungen und ihre Funktionen umfassen die Verarbeitung von Signalen von Rezeptormechanismen. Viele Wissenschaftler glauben, dass seine Funktionen auch Verantwortung für Emotionen, Gefühle und Gedächtnis beinhalten.

Details sollten die grundlegenden Funktionen des Gehirns sowie die spezifische Verantwortung seiner Abschnitte berücksichtigen.

Bewegung

Alle motorischen Aktivitäten des Körpers beziehen sich auf die Verwaltung des zentralen Gyrus, der durch die Vorderseite des Parietallappens verläuft. Die Koordination der Bewegungen und die Fähigkeit, das Gleichgewicht zu halten, liegen in der Verantwortung der Zentren im Hinterkopfbereich.

Diese Zentren befinden sich neben dem Hinterkopf direkt im Kleinhirn, und dieses Organ ist auch für das Muskelgedächtnis verantwortlich. Fehlfunktionen des Kleinhirns führen daher zu Funktionsstörungen des Bewegungsapparates.

Empfindlichkeit

Alle sensorischen Funktionen werden durch den zentralen Gyrus gesteuert, der auf der Rückseite des Parietallappens verläuft. Hier ist auch das Zentrum für die Kontrolle der Position des Körpers, seiner Mitglieder.

Sinnesorgane

Zentren in den Schläfenlappen sind für die Hörempfindungen verantwortlich. Visuelle Empfindungen für eine Person werden von den Zentren im Hinterkopf bereitgestellt. Ihre Arbeit wird durch die Tabelle der Augenuntersuchung deutlich gezeigt.

Die Verflechtung der Windungen an der Verbindung von Schläfenlappen und Stirnlappen verbirgt die Zentren, die für Geruchs-, Geschmacks- und Tastempfindungen verantwortlich sind.

Sprachfunktion

Diese Funktionalität kann in die Fähigkeit, Sprache zu erzeugen, und die Fähigkeit, Sprache zu verstehen, unterteilt werden.

Die erste Funktion wird als Motor bezeichnet und die zweite Funktion ist sensorisch. Die dafür verantwortlichen Stellen sind zahlreich und befinden sich in den Windungen der rechten und der linken Hemisphäre.

Reflexfunktion

Die sogenannte Oblong-Abteilung umfasst Bereiche, die für lebenswichtige Prozesse verantwortlich sind, die nicht durch Bewusstsein gesteuert werden.

Dazu gehören Kontraktionen des Herzmuskels, Atmung, Verengung und Erweiterung der Blutgefäße, Schutzreflexe wie Reißen, Niesen und Erbrechen sowie die Überwachung des Zustands der glatten Muskulatur der inneren Organe.

Shell-Funktionen

Das Gehirn hat drei Schalen.

Die Struktur des Gehirns ist so, dass jede Membran zusätzlich zum Schutz bestimmte Funktionen erfüllt.

Die Softshell sorgt für eine normale Blutversorgung und einen konstanten Sauerstofffluss für ihre ununterbrochene Funktion. Auch die kleinsten Blutgefäße, die mit der weichen Hülle in Verbindung stehen, produzieren Rückenmarksflüssigkeit in den Ventrikeln.

Die Arachnoidemembran ist der Bereich, in dem der Alkohol zirkuliert. Er führt die Arbeit aus, die die Lymphe im Rest des Körpers leistet. Das heißt, es schützt vor dem Eindringen pathologischer Erreger in das zentrale Nervensystem.

Die harte Schale grenzt an die Schädelknochen an und sorgt gemeinsam mit ihnen für die Stabilität der grauen und weißen Medulla. Sie schützt sie vor Stößen und Verschiebungen bei mechanischen Schlägen am Kopf. Auch die harte Schale trennt ihre Abschnitte.

Abteilungen

Woraus besteht das Gehirn?

Die Struktur und die Hauptfunktionen des Gehirns werden von seinen verschiedenen Teilen wahrgenommen. Aus der Sicht der Anatomie eines Organs aus fünf Abschnitten, die im Verlauf der Ontogenese gebildet wurden.

Verschiedene Teile des Gehirns steuern und sind für das Funktionieren einzelner Systeme und Organe einer Person verantwortlich. Das Gehirn ist das Hauptorgan des menschlichen Körpers. Seine spezifischen Abteilungen sind für das Funktionieren des gesamten menschlichen Körpers verantwortlich.

Oblong

Dieser Teil des Gehirns ist ein natürlicher Teil der Wirbelsäule. Es wurde vor allem im Verlauf der Ontogenese gebildet, und hier befinden sich die Zentren, die für unkonditionierte Reflexfunktionen sowie für Atmung, Blutkreislauf, Stoffwechsel und andere Prozesse, die nicht durch das Bewusstsein gesteuert werden, verantwortlich sind.

Hinteres Gehirn

Wofür ist die hintere Gehirnhälfte verantwortlich?

In diesem Bereich befindet sich das Kleinhirn, ein reduziertes Modell der Orgel. Es ist das Hinterhirn, das für die Koordination von Bewegungen verantwortlich ist, die Fähigkeit, das Gleichgewicht zu halten.

Und das hintere Gehirn ist der Ort, an dem Nervenimpulse durch die Neuronen des Kleinhirns übertragen werden, und zwar sowohl von den Extremitäten als auch von anderen Körperteilen, und umgekehrt, dh die gesamte körperliche Aktivität einer Person wird kontrolliert.

Durchschnitt

Dieser Teil des Gehirns ist nicht vollständig verstanden. Das Mittelhirn, seine Struktur und Funktionen werden nicht vollständig verstanden. Es ist bekannt, dass sich hier die Zentren befinden, die für die periphere Sicht, die Reaktion auf scharfe Geräusche verantwortlich sind. Es ist auch bekannt, dass sich hier Teile des Gehirns befinden, die für das normale Funktionieren der Wahrnehmungsorgane verantwortlich sind.

Zwischenstufe

Hier ist ein Abschnitt namens Thalamus. Durch sie hindurch laufen alle Nervenimpulse, die von verschiedenen Körperteilen zu den Zentren in den Hemisphären geschickt werden. Die Rolle des Thalamus besteht darin, die Anpassung des Körpers zu kontrollieren, auf äußere Reize zu reagieren und die normale Sinneswahrnehmung zu unterstützen.

Im Zwischenabschnitt befindet sich der Hypothalamus. Dieser Teil des Gehirns stabilisiert das periphere Nervensystem und steuert auch die Funktion aller inneren Organe. Hier ist der Ein-Aus-Organismus.

Es ist der Hypothalamus, der die Körpertemperatur, den Tonus der Blutgefäße, die Kontraktion der glatten Muskulatur der inneren Organe (Peristaltik) reguliert und ein Gefühl von Hunger und Sättigung erzeugt. Der Hypothalamus kontrolliert die Hypophyse. Das heißt, es ist für das Funktionieren des endokrinen Systems verantwortlich, steuert die Hormonsynthese.

Das Finale

Das letzte Gehirn ist einer der jüngsten Teile des Gehirns. Das Corpus Callosum ermöglicht die Kommunikation zwischen der rechten und der linken Hemisphäre. Im Verlauf der Ontogenese wurde es durch den letzten aller Bestandteile gebildet, es bildet den Hauptteil des Organs.

Bereiche des letzten Gehirns führen alle höheren Nervenaktivitäten aus. Hier ist die überwältigende Anzahl von Windungen, sie ist eng mit dem Subcortex verbunden, durch die das gesamte Leben des Organismus kontrolliert wird.

Das Gehirn, seine Struktur und Funktionen sind für Wissenschaftler weitgehend unverständlich.

Viele Wissenschaftler studieren es, aber sie sind noch weit davon entfernt, alle Geheimnisse zu lösen. Die Besonderheit dieses Körpers ist, dass seine rechte Hemisphäre die Arbeit der linken Körperseite steuert und auch für allgemeine Prozesse im Körper verantwortlich ist und die linke Hemisphäre die rechte Körperseite koordiniert und für Talente, Fähigkeiten, Denken, Emotionen und Gedächtnis verantwortlich ist.

Bestimmte Zentren haben auf der gegenüberliegenden Hemisphäre keine Doppelpunkte, sie befinden sich im rechten Bereich in Linkshändern und in der Linken in Rechtshändern.

Zusammenfassend können wir sagen, dass alle Prozesse, von der Feinmotorik bis zur Ausdauer und Muskelkraft, sowie die emotionale Sphäre, das Gedächtnis, die Talente, das Denken und die Intelligenz von einem kleinen Körper gesteuert werden, jedoch mit einer immer noch unverständlichen und mysteriösen Struktur.

Das ganze Leben eines Menschen wird buchstäblich vom Kopf und seinem Inhalt kontrolliert, daher ist es so wichtig, sich vor Unterkühlung und mechanischen Schäden zu schützen.

Die folgenden Zellen dominieren im menschlichen Gehirn

So befindet sich die Hörzone des Cortex in den Schläfenlappen und nimmt Impulse von den Hörrezeptoren wahr.

Die Sehzone liegt in den Hinterkopflappen. Es nimmt visuelle Signale wahr und bildet visuelle Bilder.

Die Riechzone befindet sich an der Innenfläche der Schläfenlappen.

Die empfindliche Zone (Schmerz, Temperatur, Tastempfindlichkeit) befindet sich in Parietallappen. ihr Verlust führt zu Gefühlsverlust.

Das motorische Sprachzentrum liegt im Frontallappen der linken Hemisphäre. Der vorderste Teil der Frontallappen der Kortikalis hat Zentren, die an der Bildung persönlicher Qualitäten, kreativer Prozesse und Triebkräfte einer Person beteiligt sind. Bedingt sind Reflexverbindungen im Cortex geschlossen, daher ist es das Organ, um Lebenserfahrung zu sammeln und zu sammeln und den Organismus an sich ständig ändernde Umweltbedingungen anzupassen.

Somit ist die Großhirnrinde des Vorderhirns der höchste Teil des zentralen Nervensystems, der die Arbeit aller Organe reguliert und koordiniert. Es ist auch die materielle Basis der menschlichen geistigen Tätigkeit.

Sie Möchten Gerne Über Epilepsie